Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment
نویسندگان
چکیده
Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1-6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value.
منابع مشابه
Biological treatment of tannery wastewater by using salt-tolerant bacterial strains
BACKGROUND High salinity (1-10% w/v) of tannery wastewater makes it difficult to be treated by conventional biological treatment. Salt tolerant microbes can adapt to these saline conditions and degrade the organics in saline wastewater. RESULTS Four salt tolerant bacterial strains isolated from marine and tannery saline wastewater samples were identified as Pseudomonas aeruginosa, Bacillus fl...
متن کاملA protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa.
A solvent tolerant strain of Pseudomonas aeruginosa (PseA) was isolated from soil samples by cyclohexane enrichment in medium. The strain was able to sustain and grow in a wide range of organic solvents. The adaptation of P. aeruginosa cell towards solvents was seen at membrane level in transmission electron micrographs. It also secreted a novel protease, which exhibited remarkable solvent stab...
متن کاملA novel low molecular weight extracellular protease from a moderately halophilic bacterium Salinivibrio sp. strain MS-7: production and biochemical properties
Kinetics of bacterial growth and protease production were monitored on a novel isolated moderately halophilic bacterium, Salinivibrio sp. strain MS-7, and maximum growth and protease activity was achieved after 48 hours at 30°C and 180 rpm. To determine the effect of various carbon sources on protease production, glucose, lactose, sucrose and maltose were investigated and maximum production of...
متن کاملOptimal conditions for enhancing sodium dodecyl sulfate biodegradation by Pseudomonas aeruginosa KGS
The anionic surfactant sodium dodecyl sulfate (SDS) was degraded by novel strain ofPseudomonas aeruginosa KGS under accession No. JQ328193, which was isolated from carwash wastewater. The purpose of this research was to study different optimization conditionsrequired for enhancing the biodegradation of sodium dodecyl sulfate P. aeruginosa KGS.Influence of different Physicochemical factors such ...
متن کاملبررسی اثر ساکارومایسس سرویزیه بر حرکت، الاستاز و آلکالین پروتئاز در سودوموناس آئروجینوزا
Background and Objective: According to definition of probiotics by WHO/FAO that is “Live microorganisms which, when present in sufficient amount, confer beneficial effects to the host”. Saccharomyces cerevisiae is the first non-pathogenic yeast which is known as a probiotic for humans that its helpful effects for humankind has been proved. Pseudomonas aeruginosa is one of the most ...
متن کامل